Natural Language Communication with Robots
 Yonatan Bisk ISI-USC

Joint work with:

Deniz Yuret Daniel Marcu
Koç University ISI-USC

Components of Communication

Entity/Spatial Grounding

Understanding

Planning and Plan Recognition

Language Generation

Grounding

The third block from the left

Understanding

place the nvidia block east of the hp block.

Plans

Draw the number six with a rigid base and a right diagonal top. Start with a line of 6 blocks in the middle of the table ...

Generation

[I need to] move UPS from the left side of the board to just below Starbucks, leaving a small gap.

Goal

Introduce a dataset collection paradigm for Human-Robot Communication:
Understanding, Learning, and Generation

1. Easily evaluated
2. Data exists in 3D space
3. Natural language utterances
4. Parallel annotation at differing levels of abstraction
5. Computer Vision can help but is not a pre-requisite

Dataset

Action Sequences

Identifiable Sequences

Random Blank Sequences

Problem Solution Sequences

We focus on Single Actions in this work

Corpus Creation

Simple Actions

Move HP in front of Twitter and slightly to the left

Corpus Creation

Difficult Actions

Remove the block above the right bottom block and place it on top of the left stack of blocks.

Nine Annotations

1. coca cola, hp, nvidia .
2. nvidia, to the right of hp
3. place the nvidia block east of the hp block .
4. move the nvidia block to the right of the hp block
5. place the nvidia block to the east of the hp block.
6. move the nvidia block directly to the right of the hp block.
7. move the nvidia block just to the right of the hp block in line with the mercedes block.
8. put the nvidia block on the right end of the row of blocks that includes the coca cola and hp blocks .
9. put the nvidia block on the same row as the coca cola block, in the first open space to the right of the coca cola block.

Corpus Statistics ${ }^{\text {v1 }}$

Actions Types Tokens Ave Len

MNIST	11,870	1,359	$\sim 257 \mathrm{~K}$	15 tokens
Random	2,492	1,172	$\sim 84 \mathrm{~K}$	23.5 tokens

Natural Language Understanding

Action Understanding

Given:
World
Utterance

Goal:

Execute a command

Block to Move

$$
(x, y, z)_{S}
$$

Where to Move

$$
(x, y, z)_{T}
$$

place the nvidia block east of the hp block.

World Representation

Images (w/ Occlusion)

Exact Locations

Adidas	0.8	0.1	0.76
BMW	-0.3	0.1	-0.4
Burger King	0.5	0.1	0.14
Coke	-0.07	0.1	0.00

This Work 20×3 Matrix

Evaluation: Euclidean Distance

Block to Move

$$
\left\|(x, y, z)_{\text {SPred }}-(x, y, z)_{\text {SGold }}\right\|_{2}
$$

Where to Move

$$
\left\|(x, y, z)_{\text {TPred }}-(x, y, z)_{\text {TGold }}\right\|_{2}
$$

Baseline Models

Output:

Where to Move

$$
(x, y, z)_{T}
$$

Random
Random Block to move
Random Block to place it next to
Center
Perfect knowledge of which block to move Always place it in the center of the board

Simple Semantics

Model 1: A Discrete world (Source, Direction, Reference)
Move the BMW block in front of the Adidas block

Move the Source block Direction the Reference block

Simple Semantics

Model 1: A Discrete world (Source, Direction, Reference)

End-to-End Model

Move the BMW block in front of the Adidas block

$$
\begin{gathered}
(x, y, z)_{\text {SPred }} \\
\text { or } \\
(x, y, z)_{\text {TPred }}
\end{gathered}
$$

End-to-End Model

Move the BMW block in front of the Adidas block

Assumed Logic:
Can we encode this?

End-to-End Model

MNIST Performance

	Source Mean	Target Mean
Human	0.00	0.53
Simple Semantics	$\mathbf{0 . 1 4}$	$\mathbf{0 . 9 8}$
End-To-End	0.19	1.05
Center Baseline		3.43
Random Baseline	6.49	6.21

Blank Block Performance

	Source Mean	Target Mean
Human	0.30	1.39
Simple Semantics	5.00	5.57
End-To-End	$\mathbf{3 . 4 7}$	$\mathbf{3 . 7 0}$
Center Baseline		4.06
Random Baseline	4.97	5.44

Common Errors

Multi-relation actions

Place block 20 parallel with the 8 block and slightly to the right of the 6 block.

Geometric Understanding
Continue the diagonal row of 20, 19 and 15 downward with 13.

Grammatical Ambiguity
19 moved from behind the 8 to under the 18th block.

Summary

This Work:

- Initial Models for Language Understanding
- An environment for exploring grounded phenomena

Moving Forward:

- Language Generation, Planning, ...
- Increased task difficulty.

Thanks!

http://nlg.isi.edu/language-grounding/

